Copied to
clipboard

G = C32⋊Q16⋊C2order 288 = 25·32

1st semidirect product of C32⋊Q16 and C2 acting faithfully

non-abelian, soluble, monomial

Aliases: C4.15S3≀C2, C32⋊Q161C2, (C3×C12).13D4, Dic3.D68C2, D6.D6.4C2, C322SD163C2, C321(C8.C22), C3⋊Dic3.4C23, D6⋊S3.6C22, C32⋊M4(2)⋊5C2, C322C8.1C22, C322Q8.1C22, (C3×C6).7(C2×D4), C2.10(C2×S3≀C2), (C2×C3⋊S3).31D4, (C4×C3⋊S3).32C22, SmallGroup(288,874)

Series: Derived Chief Lower central Upper central

C1C32C3⋊Dic3 — C32⋊Q16⋊C2
C1C32C3×C6C3⋊Dic3D6⋊S3C322SD16 — C32⋊Q16⋊C2
C32C3×C6C3⋊Dic3 — C32⋊Q16⋊C2
C1C2C4

Generators and relations for C32⋊Q16⋊C2
 G = < a,b,c,d,e | a3=b3=c8=e2=1, d2=c4, ab=ba, cac-1=dad-1=b, eae=cbc-1=a-1, dbd-1=a, ebe=b-1, dcd-1=c-1, ece=c5, de=ed >

Subgroups: 496 in 99 conjugacy classes, 23 normal (15 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C2×C4, D4, Q8, C32, Dic3, C12, D6, C2×C6, M4(2), SD16, Q16, C2×Q8, C4○D4, C3×S3, C3⋊S3, C3×C6, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C3×Q8, C8.C22, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, C2×C3⋊S3, C4○D12, S3×Q8, C322C8, C6.D6, D6⋊S3, C3⋊D12, C322Q8, C322Q8, C3×Dic6, S3×C12, C4×C3⋊S3, C322SD16, C32⋊Q16, C32⋊M4(2), Dic3.D6, D6.D6, C32⋊Q16⋊C2
Quotients: C1, C2, C22, D4, C23, C2×D4, C8.C22, S3≀C2, C2×S3≀C2, C32⋊Q16⋊C2

Character table of C32⋊Q16⋊C2

 class 12A2B2C3A3B4A4B4C4D4E6A6B6C6D8A8B12A12B12C12D12E12F12G
 size 11121844212121218441212363644812122424
ρ1111111111111111111111111    trivial
ρ211-1-111-1-111111-1-1-11-1-1-111-11    linear of order 2
ρ3111-111-1-11-1111111-1-1-1-1-1-1-11    linear of order 2
ρ411-1111111-1111-1-1-1-1111-1-111    linear of order 2
ρ511-1-111-11-11111-1-11-1-1-1-1111-1    linear of order 2
ρ61111111-1-1111111-1-111111-1-1    linear of order 2
ρ711-11111-1-1-1111-1-111111-1-1-1-1    linear of order 2
ρ8111-111-11-1-111111-11-1-1-1-1-11-1    linear of order 2
ρ9220-2222000-22200002220000    orthogonal lifted from D4
ρ10220222-2000-2220000-2-2-20000    orthogonal lifted from D4
ρ1144001-2-42-2001-2000022-100-11    orthogonal lifted from C2×S3≀C2
ρ1244001-24-2-2001-20000-2-210011    orthogonal lifted from S3≀C2
ρ1344-20-21400-20-21110011-21100    orthogonal lifted from S3≀C2
ρ144420-2140020-21-1-10011-2-1-100    orthogonal lifted from S3≀C2
ρ1544001-2-4-22001-2000022-1001-1    orthogonal lifted from C2×S3≀C2
ρ1644-20-21-40020-211100-1-12-1-100    orthogonal lifted from C2×S3≀C2
ρ1744001-2422001-20000-2-2100-1-1    orthogonal lifted from S3≀C2
ρ184420-21-400-20-21-1-100-1-121100    orthogonal lifted from C2×S3≀C2
ρ194-4004400000-4-400000000000    symplectic lifted from C8.C22, Schur index 2
ρ204-400-21000002-1-3--300-3i3i03-300    complex faithful
ρ214-400-21000002-1-3--3003i-3i0-3300    complex faithful
ρ224-400-21000002-1--3-300-3i3i0-3300    complex faithful
ρ234-400-21000002-1--3-3003i-3i03-300    complex faithful
ρ248-8002-400000-2400000000000    symplectic faithful, Schur index 2

Smallest permutation representation of C32⋊Q16⋊C2
On 48 points
Generators in S48
(2 14 46)(4 48 16)(6 10 42)(8 44 12)(17 32 33)(19 35 26)(21 28 37)(23 39 30)
(1 13 45)(3 47 15)(5 9 41)(7 43 11)(18 34 25)(20 27 36)(22 38 29)(24 31 40)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 21 5 17)(2 20 6 24)(3 19 7 23)(4 18 8 22)(9 32 13 28)(10 31 14 27)(11 30 15 26)(12 29 16 25)(33 45 37 41)(34 44 38 48)(35 43 39 47)(36 42 40 46)
(2 6)(4 8)(9 41)(10 46)(11 43)(12 48)(13 45)(14 42)(15 47)(16 44)(18 22)(20 24)(25 38)(26 35)(27 40)(28 37)(29 34)(30 39)(31 36)(32 33)

G:=sub<Sym(48)| (2,14,46)(4,48,16)(6,10,42)(8,44,12)(17,32,33)(19,35,26)(21,28,37)(23,39,30), (1,13,45)(3,47,15)(5,9,41)(7,43,11)(18,34,25)(20,27,36)(22,38,29)(24,31,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,21,5,17)(2,20,6,24)(3,19,7,23)(4,18,8,22)(9,32,13,28)(10,31,14,27)(11,30,15,26)(12,29,16,25)(33,45,37,41)(34,44,38,48)(35,43,39,47)(36,42,40,46), (2,6)(4,8)(9,41)(10,46)(11,43)(12,48)(13,45)(14,42)(15,47)(16,44)(18,22)(20,24)(25,38)(26,35)(27,40)(28,37)(29,34)(30,39)(31,36)(32,33)>;

G:=Group( (2,14,46)(4,48,16)(6,10,42)(8,44,12)(17,32,33)(19,35,26)(21,28,37)(23,39,30), (1,13,45)(3,47,15)(5,9,41)(7,43,11)(18,34,25)(20,27,36)(22,38,29)(24,31,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,21,5,17)(2,20,6,24)(3,19,7,23)(4,18,8,22)(9,32,13,28)(10,31,14,27)(11,30,15,26)(12,29,16,25)(33,45,37,41)(34,44,38,48)(35,43,39,47)(36,42,40,46), (2,6)(4,8)(9,41)(10,46)(11,43)(12,48)(13,45)(14,42)(15,47)(16,44)(18,22)(20,24)(25,38)(26,35)(27,40)(28,37)(29,34)(30,39)(31,36)(32,33) );

G=PermutationGroup([[(2,14,46),(4,48,16),(6,10,42),(8,44,12),(17,32,33),(19,35,26),(21,28,37),(23,39,30)], [(1,13,45),(3,47,15),(5,9,41),(7,43,11),(18,34,25),(20,27,36),(22,38,29),(24,31,40)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,21,5,17),(2,20,6,24),(3,19,7,23),(4,18,8,22),(9,32,13,28),(10,31,14,27),(11,30,15,26),(12,29,16,25),(33,45,37,41),(34,44,38,48),(35,43,39,47),(36,42,40,46)], [(2,6),(4,8),(9,41),(10,46),(11,43),(12,48),(13,45),(14,42),(15,47),(16,44),(18,22),(20,24),(25,38),(26,35),(27,40),(28,37),(29,34),(30,39),(31,36),(32,33)]])

Matrix representation of C32⋊Q16⋊C2 in GL4(𝔽73) generated by

1000
0100
007272
0010
,
727200
1000
0010
0001
,
00714
00766
431300
603000
,
00270
00027
27000
02700
,
1000
727200
0010
007272
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,72,1,0,0,72,0],[72,1,0,0,72,0,0,0,0,0,1,0,0,0,0,1],[0,0,43,60,0,0,13,30,7,7,0,0,14,66,0,0],[0,0,27,0,0,0,0,27,27,0,0,0,0,27,0,0],[1,72,0,0,0,72,0,0,0,0,1,72,0,0,0,72] >;

C32⋊Q16⋊C2 in GAP, Magma, Sage, TeX

C_3^2\rtimes Q_{16}\rtimes C_2
% in TeX

G:=Group("C3^2:Q16:C2");
// GroupNames label

G:=SmallGroup(288,874);
// by ID

G=gap.SmallGroup(288,874);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,141,120,219,100,675,346,80,2693,2028,362,797,1203]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^8=e^2=1,d^2=c^4,a*b=b*a,c*a*c^-1=d*a*d^-1=b,e*a*e=c*b*c^-1=a^-1,d*b*d^-1=a,e*b*e=b^-1,d*c*d^-1=c^-1,e*c*e=c^5,d*e=e*d>;
// generators/relations

Export

Character table of C32⋊Q16⋊C2 in TeX

׿
×
𝔽